Efecto del agua ozonizada sobre la reducción poblacional de Escherichia coli en hortalizas mínimamente procesadas

Autores/as

DOI:

https://doi.org/10.51431/par.v3i2.707

Palabras clave:

Calidad microbiológica, coliformes fecales, higiene, vegetales

Resumen

Objetivos: Determinar el efecto de la aplicación del agua ozonizada a diferentes concentraciones y tiempos de inmersión sobre la reducción poblacional de Escherichia coli (E. coli) presente en hortalizas mínimamente procesadas en un mercado peruano. Metodología: Se recolectaron e identificaron muestras de hortalizas mínimamente procesadas en ocho puestos de venta en el mercado Modelo de la Provincia de Huaral - Perú, posteriormente se determinó el recuento de E. coli en todas las muestras por triplicado y se seleccionó la muestra que presentó la media más alta; esta muestra se subdividió y se sometió a desinfección empleando agua ozonizada en los que se combinaron dos factores con tres niveles cada uno; concentración de ozono (0,1; 0,5 y 1 ppm) y tiempo de inmersión (30; 150 y 300 segundos), finalmente se volvió a realizar el recuento de E. coli por triplicado para los nueve tratamientos a fin de ver su efecto en la población control inicial. Resultados: De las ocho muestras analizadas la más contaminada alcanzó recuentos de 4,06±0,02 Log ufc g-1 para E. coli y tras su aplicación con agua ozonizada se lograron reducciones poblacionales desde 0,5±0,01 hasta 1,76±0,09 Log ufc g-1 con respecto al control. Conclusiones: El tratamiento con niveles de concentración de 1 ppm de ozono en el agua y tiempo de inmersión de 300 segundos tuvo el mayor efecto bactericida sobre la población microbiana de Escherichia coli presente en hortalizas mínimamente procesadas en el mercado modelo de Huaral.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguayo, E., Escalona, V., Silveira, A. C., & Artés, F. (2014). Quality of tomato slices disinfected with ozonated water. Food Science and Technology International, 20(3), 227-235. https://doi.org/10.1177/1082013213482846.

Akbas, M. Y., & Ölmez, H. (2007). Effectiveness of organic acid, ozonated water and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. Journal of the Science of Food and Agriculture, 87(14), 2609-2616. https://doi.org/10.1002/jsfa.3016.

Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(15), 2632-2649. https://doi.org/10.1080/10408398.2017.1339180.

Almeida, L. F. F., Novaes, T. G., Pessoa, M. C., Do Carmo, A. S., Mendes, L. L., & Ribeiro, A. Q. (2021). Fruit and vegetable consumption among older adults: Influence of urban food environment in a medium-sized Brazilian city. Public Health Nutrition, 24(15), 4878-4887. https://doi.org/10.1017/S136898002000467X.

Aslam, R., Alam, M. S., & Pandiselvam, R. (2021)a. Aqueous Ozone Sanitization System for Fresh Produce: Design, Development, and Optimization of Process Parameters for Minimally Processed Onion. Ozone: Science and Engineering. https://doi.org/10.1080/01919512.2021.1984206.

Aslam, R., Alam, M. S., & Saeed, P. A. (2020). Sanitization Potential of Ozone and Its Role in Postharvest Quality Management of Fruits and Vegetables. Food Engineering Reviews, 12(1), 48-67. https://doi.org/10.1007/s12393-019-09204-0.

Aslam, R., Alam, M. S., Singh, S., & Kumar, S. (2021)b. Aqueous ozone sanitization of whole peeled onion: Process optimization and evaluation of keeping quality during refrigerated storage. LWT-Food Science and Technology, 151. https://doi.org/10.1016/j.lwt.2021.112183.

Castro-Ibáñez, I., Gil, M. I., & Allende, A. (2017). Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT - Food Science and Technology, 85, 284-292. https://doi.org/10.1016/j.lwt.2016.11.073.

Coroneo, V., Carraro, V., Marras, B., Marrucci, A., Succa, S., Meloni, B., Pinna, A., Angioni, A., Sanna, A., & Schintu, M. (2017). Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Additives & Contaminants: Part A, 34(12), 2111-2117. https://doi.org/10.1080/19440049.2017.1382723.

Dos Santos, da Silva, L. V., Lepaus, B. M., & de São José, J. F. B. (2021). Microbial quality and labeling of minimally processed fruits and vegetables. Bioscience Journal, 37. https://doi.org/10.14393/BJ-v37n0a2021-53734.

Dos Santos, Silva, N. da, Junqueira, V. C. A., & Pereira, J. L. (2010). Microrganismos indicadores em frutas e hortaliças minimamente processadas. Brazilian Journal of Food Technology, 13(02), 141-146. https://doi.org/10.4260/BJFT2010130200019.

Farfán-García, A. E., Ariza-Rojas, S. C., Vargas-Cárdenas, F. A., & Vargas-Remolina, L. V. (2016). Mecanismos de virulencia de Escherichia coli enteropatógena. Revista chilena de infectología, 33(4), 438-450. http://dx.doi.org/10.4067/S0716-10182016000400009.

Food and Drug Administration. (2018). Bacteriological Analytical Manual (8th ed.). Association of Official Analytical Chemists Gaithersburg. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam.

Garrido, Y., Marín, A., Tudela, J. A., Truchado, P., Allende, A., & Gil, M. I. (2020). Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water. Food Control, 114. https://doi.org/10.1016/j.foodcont.2020.107283

Gil, A. I., Lanata, C. F., Hartinger, S. M., Mäusezahl, D., Padilla, B., Ochoa, T. J., Lozada, M., Pineda, I., & Verastegui, H. (2014). Fecal contamination of food, water, hands, and kitchen utensils at the household level in rural areas of Peru. Journal of Environmental Health, 76(6), 102-106. https://europepmc.org/article/med/24645420#abstract.

Guzel-Seydim, Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT - Food Science and Technology, 37(4), 453-460. https://doi.org/10.1016/j.lwt.2003.10.014.

Hyun-Gyun, Y., Mee-Young, Y., Jae-Won, Y., Kwang-Deog, M., Marshall, D. L., & Deog-Hwan, O. (2006). Effect of Combined Ozone and Organic Acid Treatment for Control of Escherichia coli O157:H7 and Listeria monocytogenes on Lettuce. Journal of Food Science, 71(3), M83-M87. https://doi.org/10.1111/j.1365-2621.2006.tb15636.x.

Marín, A., Tudela, J. A., Garrido, Y., Albolafio, S., Hernández, N., Andújar, S., Allende, A., & Gil, M. I. (2020). Chlorinated wash water and pH regulators affect chlorine gas emission and disinfection by-products. Innovative Food Science and Emerging Technologies, 66. https://doi.org/10.1016/j.ifset.2020.102533.

Milte, C. M., & McNaughton, S. A. (2016). Dietary patterns and successful ageing: A systematic review. European Journal of Nutrition, 55(2), 423-450. https://doi.org/10.1007/s00394-015-1123-7.

Monteiro, C. A., Cannon, G., Moubarac, J.-C., Levy, R. B., Louzada, M. L. C., & Jaime, P. C. (2018). The un Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutrition, 21(1), 5-17. https://doi.org/10.1017/S1368980017000234.

Ramirez-Hernandez, A., Galagarza, O. A., Álvarez Rodriguez, M. V., Pachari Vera, E., Valdez Ortiz, M. D. C., Deering, A. J., & Oliver, H. F. (2020). Food safety in Peru: A review of fresh produce production and challenges in the public health system. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3323-3342. https://doi.org/10.1111/1541-4337.12647.

Resolución Ministerial N° 591-2008/MINSA, (2008). https://www.gob.pe/institucion/minsa/normas-legales/247682-591-2008-minsa.

Santos, L. M. C. D., Silva, E. S. da, Oliveira, F. O., Rodrigues, L. de A. P., Neves, P. R. F., Meira, C. S., Moreira, G. A. F., Lobato, G. M., Nascimento, C., Gerhardt, M., Lessa, A. S., Mascarenhas, L. A. B., & Machado, B. A. S. (2021). Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity. Biology, 10(6), 525. https://doi.org/10.3390/biology10060525.

Silberbauer, A., & Schmid, M. (2017). Packaging Concepts for Ready-to-Eat Food: Recent Progress. Journal of Packaging Technology and Research, 1(3), 113-126. https://doi.org/10.1007/s41783-017-0019-9.

United States environmental protection agency. (2020). National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.

Vidal, L., Ares, G., & Giménez, A. (2013). Projective techniques to uncover consumer perception: Application of three methodologies to ready-to-eat salads. Food Quality and Preference, 28(1), 1-7. https://doi.org/10.1016/j.foodqual.2012.08.005.

Vijay Rakesh Reddy, S., Sudhakar Rao, D. V., Sharma, R. R., Preethi, P., & Pandiselvam, R. (2021). Role of Ozone in Post-Harvest Disinfection and Processing of Horticultural Crops: A Review. Ozone: Science and Engineering. https://doi.org/10.1080/01919512.2021.1994367.

Vilas, I. A., Seró, M. A., Medà, P. C., Cordero, C. C., & Almenar, I. V. (2020). Biopreservation against foodborne pathogens on minimally processed fruits and vegetables. Arbor, 196(795), 1-11. https://doi.org/10.3989/arbor.2020.795n1007.

Villanueva, C. M. (2019). Carcinogenicity of disinfection byproducts in humans: Epidemiological studies. Encyclopedia of Environmental Health (pp. 517-527). https://doi.org/10.1016/B978-0-12-409548-9.11191-1.

Villeminot, N. (2018). Strengthening market systems that provide water and hygiene items for cholera mitigation and emergency preparedness in Haiti. Waterlines, 37(4), 307-318. https://doi.org/10.3362/1756-3488.17-00027.

Descargas

Publicado

2021-12-30

Cómo citar

Caro-Degollar, E. M., Fernández, F., Miranda, D. J., Vásquez, G. N., Bautista, F. A., & Nunja-García, J. V. (2021). Efecto del agua ozonizada sobre la reducción poblacional de Escherichia coli en hortalizas mínimamente procesadas. Peruvian Agricultural Research, 3(2). https://doi.org/10.51431/par.v3i2.707

Número

Sección

Comunicación corta