Effect of ozonated water on the population reduction of Escherichia coli in minimally processed vegetables

Authors

DOI:

https://doi.org/10.51431/par.v3i2.707

Keywords:

Microbiological quality, fecal coliforms, hygiene, vegetables

Abstract

Objectives: To determine the effect of the application of ozonated water at different concentrations and immersion times on the microbial reduction of Escherichia coli (E.coli) present in minimally processed vegetables in a Peruvian market. Methodology: samples of minimally processed vegetables were collected and identified in eight stalls in the Modelo market of the Province of Huaral - Peru, later the E. coli count was determined in all the samples in triplicate and the sample that presented the highest average; This sample was subdivided and subjected to disinfection using ozonated water in which two factors were combined with three levels in each one; ozone concentration (0,1; 0,5 and 1 ppm) and immersion time (30, 150 and 300 seconds), finally the E. coli count was re-counted in triplicate for the nine treatments in order to see their effect in the initial control population. Results: Of the eight samples analyzed, the most contaminated reached counts of 4,06 ± 0,02 Log cfu g-1 for E. coli and after its application with ozonated water, population reductions were achieved from 0,5 ± 0,01 to 1,76 ± 0,09 Log cfu g-1 with regarding control. Conclusions: Treatment with concentration levels of 1 ppm of ozone in water and an immersion time of 300 seconds had the greatest bactericidal effect on the microbial population of Escherichia coli present in minimally processed vegetables in the Huaral model market.

Downloads

Download data is not yet available.

References

Aguayo, E., Escalona, V., Silveira, A. C., & Artés, F. (2014). Quality of tomato slices disinfected with ozonated water. Food Science and Technology International, 20(3), 227-235. https://doi.org/10.1177/1082013213482846.

Akbas, M. Y., & Ölmez, H. (2007). Effectiveness of organic acid, ozonated water and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. Journal of the Science of Food and Agriculture, 87(14), 2609-2616. https://doi.org/10.1002/jsfa.3016.

Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(15), 2632-2649. https://doi.org/10.1080/10408398.2017.1339180.

Almeida, L. F. F., Novaes, T. G., Pessoa, M. C., Do Carmo, A. S., Mendes, L. L., & Ribeiro, A. Q. (2021). Fruit and vegetable consumption among older adults: Influence of urban food environment in a medium-sized Brazilian city. Public Health Nutrition, 24(15), 4878-4887. https://doi.org/10.1017/S136898002000467X.

Aslam, R., Alam, M. S., & Pandiselvam, R. (2021)a. Aqueous Ozone Sanitization System for Fresh Produce: Design, Development, and Optimization of Process Parameters for Minimally Processed Onion. Ozone: Science and Engineering. https://doi.org/10.1080/01919512.2021.1984206.

Aslam, R., Alam, M. S., & Saeed, P. A. (2020). Sanitization Potential of Ozone and Its Role in Postharvest Quality Management of Fruits and Vegetables. Food Engineering Reviews, 12(1), 48-67. https://doi.org/10.1007/s12393-019-09204-0.

Aslam, R., Alam, M. S., Singh, S., & Kumar, S. (2021)b. Aqueous ozone sanitization of whole peeled onion: Process optimization and evaluation of keeping quality during refrigerated storage. LWT-Food Science and Technology, 151. https://doi.org/10.1016/j.lwt.2021.112183.

Castro-Ibáñez, I., Gil, M. I., & Allende, A. (2017). Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT - Food Science and Technology, 85, 284-292. https://doi.org/10.1016/j.lwt.2016.11.073.

Coroneo, V., Carraro, V., Marras, B., Marrucci, A., Succa, S., Meloni, B., Pinna, A., Angioni, A., Sanna, A., & Schintu, M. (2017). Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Additives & Contaminants: Part A, 34(12), 2111-2117. https://doi.org/10.1080/19440049.2017.1382723.

Dos Santos, da Silva, L. V., Lepaus, B. M., & de São José, J. F. B. (2021). Microbial quality and labeling of minimally processed fruits and vegetables. Bioscience Journal, 37. https://doi.org/10.14393/BJ-v37n0a2021-53734.

Dos Santos, Silva, N. da, Junqueira, V. C. A., & Pereira, J. L. (2010). Microrganismos indicadores em frutas e hortaliças minimamente processadas. Brazilian Journal of Food Technology, 13(02), 141-146. https://doi.org/10.4260/BJFT2010130200019.

Farfán-García, A. E., Ariza-Rojas, S. C., Vargas-Cárdenas, F. A., & Vargas-Remolina, L. V. (2016). Mecanismos de virulencia de Escherichia coli enteropatógena. Revista chilena de infectología, 33(4), 438-450. http://dx.doi.org/10.4067/S0716-10182016000400009.

Food and Drug Administration. (2018). Bacteriological Analytical Manual (8th ed.). Association of Official Analytical Chemists Gaithersburg. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam.

Garrido, Y., Marín, A., Tudela, J. A., Truchado, P., Allende, A., & Gil, M. I. (2020). Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water. Food Control, 114. https://doi.org/10.1016/j.foodcont.2020.107283

Gil, A. I., Lanata, C. F., Hartinger, S. M., Mäusezahl, D., Padilla, B., Ochoa, T. J., Lozada, M., Pineda, I., & Verastegui, H. (2014). Fecal contamination of food, water, hands, and kitchen utensils at the household level in rural areas of Peru. Journal of Environmental Health, 76(6), 102-106. https://europepmc.org/article/med/24645420#abstract.

Guzel-Seydim, Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT - Food Science and Technology, 37(4), 453-460. https://doi.org/10.1016/j.lwt.2003.10.014.

Hyun-Gyun, Y., Mee-Young, Y., Jae-Won, Y., Kwang-Deog, M., Marshall, D. L., & Deog-Hwan, O. (2006). Effect of Combined Ozone and Organic Acid Treatment for Control of Escherichia coli O157:H7 and Listeria monocytogenes on Lettuce. Journal of Food Science, 71(3), M83-M87. https://doi.org/10.1111/j.1365-2621.2006.tb15636.x.

Marín, A., Tudela, J. A., Garrido, Y., Albolafio, S., Hernández, N., Andújar, S., Allende, A., & Gil, M. I. (2020). Chlorinated wash water and pH regulators affect chlorine gas emission and disinfection by-products. Innovative Food Science and Emerging Technologies, 66. https://doi.org/10.1016/j.ifset.2020.102533.

Milte, C. M., & McNaughton, S. A. (2016). Dietary patterns and successful ageing: A systematic review. European Journal of Nutrition, 55(2), 423-450. https://doi.org/10.1007/s00394-015-1123-7.

Monteiro, C. A., Cannon, G., Moubarac, J.-C., Levy, R. B., Louzada, M. L. C., & Jaime, P. C. (2018). The un Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutrition, 21(1), 5-17. https://doi.org/10.1017/S1368980017000234.

Ramirez-Hernandez, A., Galagarza, O. A., Álvarez Rodriguez, M. V., Pachari Vera, E., Valdez Ortiz, M. D. C., Deering, A. J., & Oliver, H. F. (2020). Food safety in Peru: A review of fresh produce production and challenges in the public health system. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3323-3342. https://doi.org/10.1111/1541-4337.12647.

Resolución Ministerial N° 591-2008/MINSA, (2008). https://www.gob.pe/institucion/minsa/normas-legales/247682-591-2008-minsa.

Santos, L. M. C. D., Silva, E. S. da, Oliveira, F. O., Rodrigues, L. de A. P., Neves, P. R. F., Meira, C. S., Moreira, G. A. F., Lobato, G. M., Nascimento, C., Gerhardt, M., Lessa, A. S., Mascarenhas, L. A. B., & Machado, B. A. S. (2021). Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity. Biology, 10(6), 525. https://doi.org/10.3390/biology10060525.

Silberbauer, A., & Schmid, M. (2017). Packaging Concepts for Ready-to-Eat Food: Recent Progress. Journal of Packaging Technology and Research, 1(3), 113-126. https://doi.org/10.1007/s41783-017-0019-9.

United States environmental protection agency. (2020). National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.

Vidal, L., Ares, G., & Giménez, A. (2013). Projective techniques to uncover consumer perception: Application of three methodologies to ready-to-eat salads. Food Quality and Preference, 28(1), 1-7. https://doi.org/10.1016/j.foodqual.2012.08.005.

Vijay Rakesh Reddy, S., Sudhakar Rao, D. V., Sharma, R. R., Preethi, P., & Pandiselvam, R. (2021). Role of Ozone in Post-Harvest Disinfection and Processing of Horticultural Crops: A Review. Ozone: Science and Engineering. https://doi.org/10.1080/01919512.2021.1994367.

Vilas, I. A., Seró, M. A., Medà, P. C., Cordero, C. C., & Almenar, I. V. (2020). Biopreservation against foodborne pathogens on minimally processed fruits and vegetables. Arbor, 196(795), 1-11. https://doi.org/10.3989/arbor.2020.795n1007.

Villanueva, C. M. (2019). Carcinogenicity of disinfection byproducts in humans: Epidemiological studies. Encyclopedia of Environmental Health (pp. 517-527). https://doi.org/10.1016/B978-0-12-409548-9.11191-1.

Villeminot, N. (2018). Strengthening market systems that provide water and hygiene items for cholera mitigation and emergency preparedness in Haiti. Waterlines, 37(4), 307-318. https://doi.org/10.3362/1756-3488.17-00027.

Published

2021-12-30

How to Cite

Caro-Degollar, E. M., Fernández, F., Miranda, D. J., Vásquez, G. N., Bautista, F. A., & Nunja-García, J. V. (2021). Effect of ozonated water on the population reduction of Escherichia coli in minimally processed vegetables. Peruvian Agricultural Research, 3(2). https://doi.org/10.51431/par.v3i2.707

Issue

Section

Short communication